
Implementing a Connectionist Production System
Using Tensor Products

Charles P .. Dolan
Paul Smolensky

(~~University of Colorado at Boulder
~

DEPARTMENT OF COMPUTER SCIENCE

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
SEP 1988 2. REPORT TYPE

3. DATES COVERED
 00-00-1988 to 00-00-1988

4. TITLE AND SUBTITLE
Implementing a connectionist production system using tensor products

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Colorado,Department of Computer
Science,Boulder,CO,80309

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
In this paper we show that the tensor product technique for constructing variable bindings and for
representing symbolic structure-used by Dolan and Dyer (1987) in parts of a connectionist story
understanding model, and analyzed in general tenns in Smolensky (1987)--can be effectively used to build a
simplified version ofTouretzky & Hinton’s (1988) Distributed Connectionist Production System. The new
system is called the Tensor Product Product System (TPPS).

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

13

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS
EXPRESSED IN THIS PUBI.JICATION ARE THOSE OF THE AUTHOR(S) AND DO
NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE

ACKNOWLEDGMENTS SECTION ..

To appear in the Proceedings of the 1988 Connectionist Models Summer School
Touretzky, Hinton, & Sejnowski (Eds.) Morgan Kaufmann.

Implementing a connectionist production

system using tensor products

September, 1988

UCLA-AI-88-15

Charles P. Dolan

AI Center
.liughes Research Labs

3011 Malibu Canyon Rd.
Malibu, CA 90265

&
UCLA A! lAboratory

CU-CS-411-88

Paul Smolensky

Department of Computer Science &
Institute of Cognitive Science

University of Colorado
Boulder, CO 80309-0430

Abstract

In this paper we show that the tensor product technique for constructing variable bindings and for
representing symbolic structure-used by Dolan and Dyer (1987) in parts of a connectionist story
understanding model, and analyzed in general tenns in Smolensky (1987)--can be effectively used to
build a simplified version ofTouretzky & Hinton's (1988) Distributed Connectionist Production System.
The new system is called the Tensor Product Product System (TPPS).

Copyright© 1988 by Charles Dolan & Paul Smolensky.

•'

Implementing a connectionist production system using tensor products

Charles P. Dolan
AI Center, Hughes Research Labs

3011 Malibu Canyon Rd
Malibu, CA, 90265,

&
UCLA .AI Laboratory

Paul S molensk:y
Department of Computer Science &

Institute of Cognitive Science
University of Colorado

Box 430, Boulder, CO 80309-0430

l. Introduction

The ability to represent relationships among entities is a
central problem in connectionist models of cognition.
The problem has gone under several names including
variable binding, role representation, and "t.hirdness".
Smolensky (1987) has shown that many attempts to solve
this problem can be analyzed mathematically using
tensors, or generalized vector outer products. Dolan and
Dyer (1987, in this volume) have applied tensorial
representations to demonstrate partS of a connectionist
story understanding model.

What has not been shown, however, is whether explicidy
adapting representations currently in use to a tensorial
scheme actually buys anything in a modeL Aspects of a
model that one would hope to improve by using a
mathematically based approach might be: (1) easier
analysis of results, (2) analytical predictions of model
performance, and (3) more straightforward construction
of a simpler modeL The purpose of this paper is to take
an existing model that solves some aspects of the variable
binding problem, Touretzky & Hinton's (1988) connec·
tionist production system, and show how some of the
advantages listed above can accrue from building a
closely related model by straightforward application of
the tensorial representation. This work demonstrates (3),
and previous! y developed techniques from (S molensky

1987) could be used to make progress on (1) and (2).

1.1. Tensor products

The tensor product can be straightforwardly understood as
a generalization of the outer product of two vectors.
Given two column vectors, x andy, the inner product, x1y

is the familiar "dot" product x•y. The outer product, xyr,
is simply the familiar matrix multiplication which takes a
column vector and a row vector and yields a matrix. The ·
ij element of this matrix is :x;; ~ This outer product

• I
operaoon can also be viewed as a tensor product which is
written x®y. Thus the matrix xy1 can be viewed as a
tensor with two indices, or a tensor of rank two. A vector
is a tensor with one index, or a tensor of rank one; and a
simple scalar is a tensor of rank zero. Similarly, there are
tensors of rank higher than two, with more than two
indices; these can be generated by taking the tensor
product of more than two vectors.

=

Figure 1: Building a third-rank tensor from three vectors.

·) \.

If all we ever needed was a 2nd order tensor we could
stay with familiar matrix notation. However, the major
demonstration of the paper requires 3rd order tensors and
so we shall use the more general apparatus of tensor
algebra. Figure 1 demonstrates how to view the third
order tensor x®y®z. Simply take the elements of x®y, a
familiar matrix, and form planes of them, one for each
element of z: in each plane i , the matrix x®y is multi
plied by ·the sc.a1.ar z

1

To use tensors to represent structure, we decompose a
structure into a set of filler/role pairs and then use a sum
of tensor products as the representation of the structure.
Formally this can be stated as follows:

Let a setS of structured objects be given a role decompo
sition: a set of fillers, F, a set of roles, R, and for each
objects a corresponding set of role/filler bindings:

Let a connectionist representation of the fillers F be
given; each J: is represented by the activity vector f r

Let a connectionist representation of the fillers R be
given; each r.is represented by the activity vector r ~

J J

Then the corresponding tensor product representation of s
is,

A number of the general properties of tensor product
representations are analyzed in (Smolensky 1987). One
of them is that they can be recursively imbedded. This
leads to overall representations which are tensors of rank:
higher than two; essentially, each level of imbedding adds
a rank to the overall tensor.

To see how a tensor product can be used to represent
symbolic information, we only need to realize that most
traditional symbolic representations can be broken down
into triples of symbols. For example a frame, s with slots,
r. and fillers f can be represented with a set of triples, (s r.
/;J. By establlshing a vector representation for frames, '
slots, and fillers, we can represent a frame by :E,s®r;®f r
Examples of decomposing frames into triples can be
found in (Dolan and Dyer, in this volume).

2

1.2. DCPS as a tensor product

One model, which at first glance seems not to be using
tensor products, is the distributed connectionist produc
tion system (DCPS) (Touretzky & Hinton 1988). DCPS
uses an alphabet of 25 symbols, A-Y, and its rules use
triples of symbols that are coarse coded. To construct the
representation, a pool of 2000 units is used. Each unit has
a receptive field table associated with it. An example
receptive field is shown in Figure 2.

A unit is part of the representation of a triple if and only if
its receptive field table has the ls~ 2nd. and 3rd elements
of the triple in its 1st, 2nd and 3rd columns, respectively.
For example, the unit with the receptive field in Figure 2
is part of (CAB), (CAD), and (11 ED), but it is not part
of (C A C) or (GIL). The representation of a triple is the
set of all units that have that triple in their receptive field.
In the version of DCPS reported in (Touretz.ky & Hinton
1988), each table had six rows and each triple was
represented by the activity of about 28 units.

To see how this representation can be analyzed with the
tensor product, we will use a diagonalizing procedure first
reported in (Smolensky 1987). We will demonstrate the
procedure using pairs of symbols, rather than the triples of
DCPS, since that is easier to visualize; the analysis
extends immediately to the triple case using third-rank
tensors.

We first note that with respect to DCPS the symbols in
different columns do not interact and an "A" in the first
column really bears no meaningful relation to an "A" in
the second column. Therefore a pair can readily be
viewed as something like(~ B2) or (G1 A,). Given a set
of N receptive field tables (2000 in DCPS) we can fonn a
matrix where the rows and columns are labeled by the
columns of the receptive field tables. The matrix is NxN
because there are N independent receptive field table, and
the tables are Kx2, where K is a "coarseness" parameter.

c A I 8
F E 0

M H J

Q K M

s T p

w y R

Figure 2: Example Receptive field table

t
0 •

. ~: ·---e,

Figure 3: Analyzing DCPS's representation as a tensor product

Now we can represent a symbol ~1 by the N bit pattern
consisting of active units for each of the tables in which
~tis in column 1, and likewise for any symbol~· This
procedure is demonstrated in Figure 3, where both

·representations of (A A) are shown with DCPS on top of
the tensor product. The grey squares are the active units
for the tensor product and the black square is the active
unit used by DCPS. In the example shown in the figure,
the representations for A1 = (0 0 1 1) and A2 = (0 1 1 0)
are derived by labeling the rows and colwnns of the
matrix with the first and second columns of the receptive
field tables. Using this representation we can view DCPS
as using a tensor product representation with 2000 bit
symbols. The reason that this does not produce an
unreasonable number of units in the working memory
representation is that all but the diagonal elements are
discarded. In Figure 3, diagonal elements are the four
outlined units shown on top of tbe tensor product repre
sentation.

On the average, each symbol would be represented by a
2000 bit vector containing 2000x6/25 = 480 active bits
since each receptive field table of DCPS had 6 rows and
there are 25 symbols. There are a tremendous number of
480 out of 2000 bit patterns, approximately 2 x 1 ()481

, only
25 of which would be used for each column. This makes
DCPS an extremely sparse sampling of that symbol space.
In fact those 25 symbols are specially designed so that
every three-way conjunction of them has very close to 28
active units. This fact is extremely important to the
dynamics of DCPS and finding those special receptive

3

field tables took a considerable amount of computational
effOrt (Touretzky & Hinton 1988).

1..3. The possible advantllges of tensors over custom
coarse codings

A naOJral question to ask is whether another approach u;
the same task might be able to use a dense sampling of the
symbol space. The full tensor product has a desirable
property that makes it a likely candidate. The property,
which is covered in detail in (Smolensky 1987), is the
ability to unbind one component of an fVtb. order tensor
product given N-1 components.

The method of unbinding we will be using here is called
the self-addressed technique in (Srnolensky 1987). Given
a tensor product representation of the triple (s r j), s®r®f~
we can unbind the filler f from the frame role it is bound
to, s®r, by a simple linear computation: (s®r®tj•(s®r) =
aJ where a is a constant magniOJde factor equal to
(s•s)(v•v). If we have a superimposed tensor product
representations of multiple slot/filler bindings, we can still
perform unbinding using self addressing. Now, however,
we will get a result that has components in the direction
of other fillers. For example, if we try to unbind the flller
of s1 ®r 1 from the superimposed tensor product !:s.
®ri®fi We Will get L~StS1)(ri•r1)fi If all the diffe;e~t S/S
are orthogonal and likewise for the r.'s, then we are
guaranteed to still get ai

1
as above. '

More generally, if the various s.' s have the same lengtb
and similarly for the various r/~. then this unbinding '
procedure will produce a weighted superposition of the
f/ s in which fl has the largest weight. However, in a
densely sampled symbol space there may be another filler
symbol!; with a connectionist representation f. which is
closer to the unbound pattern than is rl" J

From the above discussion, one might surmise that using
the tensor product representation on densely sampled
symbol spaces is not a workable solution. However, it
may happen that we are simultaneously trying to satisfy
multiple retrieval cues rather than a single one (i.e., if we
are looking for something that simultaneously fills
multiple roles). This extra constraint can actually
enhance retrieval. This is exactly the situation in the
retrievals needed for the productions used in DCPS,
where the conditions require unbinding a filler that
simultaneously fllls two different roles. We shall see
below how these multiple constraints can be exploited.

2. DCPS redone with tensor products:
TPPS

We now describe a connectionist production system based
on tensor product representations~ TPPS, that. like DCPS,
operates with productions of the form

The condition side consists of two triples, each of which
contains a common variable in the final position. The
action side consists of a triple to add and a triple to delete,
and these triples also contain the variable from the
condition side in their third position. As in DCPS, there
were 25 distinct symbols that could occupy each of the
three positions in the triples. Actually both the DCPS and
TI'PS architectures will work with less restrictive rule
formats. Other rules with more than two actions per rule
and arbitrary placement of variables in the action portion
have been demonstrated with DCPS.

2.1. Working memory

The working memory (WM) of TPPS is a network

containing a representation of a set of triples Ui((si ri

J;J}; the representation is a third-order tensor product B =

i:s.®r.®f_ In our simulation, the vectors chosen to
1 I I 1

represent the elementary symbols si were 7-bit vectors

Working
Memory

(sl rl)

producuon 1
subnet

ltJ'1tnqttl-ot~•ecn

production 2
subnet

ltJ'1tnqttl-ot-mldeh

production
subnet

0

+(~ rJ >

-<s.; r4)

winner
ta.ke-aJI

competition

Figure 4: The architecture ofTTPS

4

. consisting of three ls and four Os. They were chosen so
that no two vectors had more than two 1-bits in common
(i.e.~ the dot-product between any two was at most 2);
otherwise the vectors were rnndom. The same procedure
was used to assign 7 -bit vectors to the ri, and again to the
J;~ There was no reason to be concerned about the relation
between vectors representing different types of symbols,
(e.g.~ one of the s; and one of the[) conceptually, they
belong to different 7-dirnensional vector spaces. Since
WM contains tensor products of three 7-bit vectors, it
consists of 73 = 343 units.

2.2. The architecture

In TPPS, each production corresponds to a separate sub
network. The details of the connections for these sub
networks will be provided in the next section; here we
intend only to indicate their qualitative structure. The
sub-network for a given production consists of a set of
units for holding possible values of z for matching the
first triple in the condition, another set of units for holding
the corresponding values for the second triple, and a third
set of units for building a common value across the two
triples. We call these three groups of units the x

1
units,

the z2 units, and the z units, respectively. In our simula
tion, each group contained 7 units. The connections from
WM into the z 1 units encode the pattern (s1 r) from the
first triple; the connections from WM into the z2 units
encode the pattern from the second triple (s2 r

2). The
connections from the z1 and z2 units into the z units are
the same for all productions. There is an additional unit
in each production sub-networ~ it registers how strongly
that production has matched to WM. These strength-of
match units for all productions are connected in a winner
take-all network, and the production with the strongest
match is permitted to send activation back to WM to add
and delete the appropriate triples. The connections into
WM from the x units in a production sub-network encode
the patterns (s1 rJ). (s4 r~) from the action side of that
production. In order to minimize the propagation of noise
into WM, before firing, the production sub-network
cleans up its representation of z. The top level organiza
tion of the architecture is shown in Figure 4.

The processing in TPPS proceeds as follows. The
production sub-networks in parallel perform matching to
WM, with feed-forward activation passing in parallel
from WM to the x

1
and x

2
units, then to the x units and

then to the strength-of-match unit The winner-take-all
competition between the strength-of-match unit achieves
best-match conflict resolution, where all the strength-of
match units are driven to zero activity except the most
active. While this conflict resolution is going on, each

production sub-network is cleaning up the pattern in its x
units .. generating a noise-free pattern in another group of
units called the x* units. When the most active strength
of-match unit has been selec~ it opens the gated
connections between its x* units and WM. The contents
of WM are updated and the cycle begins again.

2J. Representation ofproductions' conditions

The condition side of each production is encoded in the
connections from WM to the x1 and :::, units. The connec
tions from WM to the xr units perform a linear operation:
from B, the state of WM, they set up in the x1 units the
pattern B • (s1 ®r 1). Thus the x1 units are purely linear,
and the connection from WM unit ijk to x1 unit m is (s1)i
(r1).<\,. (om. is 1 if k = m, otherwise it is 0). The story
for

1
the connections from WM to the x2 units is analogous.

Thus the pattern in the x1 units indicates those symbols x1
corresponding to triples (s1 r 1 x1) present in WM. If there
are no such triples, the pattern in the x1 units will be
approximately zero; if there is one such triple, a pattern
approximating the corresponding value of x1 will be found
in the x

1
units. If there are several such triples, the

superposition of the patterns representing these different
possible values of x1 will be found.

2.4. Variable binding

At this point we have done variable binding separately for
the two triples in the condition of the production: the
separate results are held in the x1 and X:z units. We now
try to extract from these the representation of a common
value in the x units. The feed-forward connections from
the x1 and x2 units to the x units take the vectors ~ and X:z
and generate the vector x by the bilinear computation:

The + operation is component-wise multiplication: the
activity of the mill x unit is the activity of the mfb x

1
unit

times the activity of the mfb x 2 unit This multiplication
can be achieved with Hinton's (1981) triangular multipli
cative junctions or with sigma-pi (Rumelhart, Hinton &
McOelland, 1986) units.

The + operation can be used to seek a common binding
for x because it is a bilinear function with the propeny
that if x is a Boolean vector (its components are all Os and
ls) then x + x = x. On the other hand, if x andy
represent two different symbols, x + y will be close to
zero (its length is x • y, which is close to zero since the
vectors representing distinct symbols are nearly orthogo-

5

nal). Thus. for example, suppose WM contains two
possible bindings, a and b, for x in the fll'St triple of a
production's condition, and two possible bindings, a and
c, for the second triple. Then we will have (ignoring
multiplicative scale factors):

x1 =a+ b
~=a+c

X =~ + ~
= (a + b) + (a + c)
=a+a+a+c+b+a+b+c
:a.

Since the vectors representing different symbols are not
completely orthogonal, the resulting vector x will contain
noise. TPPS has a clean-up circuit in each production's
sub-networlc that takes the noisy vector x and replaces it
with a vector x• that is the symbol vector closest to x.
The current version does this with a simple local competi
tion: there is one unit for each possible symbol, and each
receives feed-forward activity from x equal to the dot
product ofx with that symbol's vector. A simple winner
take-all feedback system connecting these symbol units
selects the most active unit, i.e., the symbol closest to x,
and this unit then sends feed-forward activity to the x*
units. The connection from the mill ..t unit to the unit for a
symbol a is the rrrn element of the vector representing a,
and this is also the strength of the connection from the a
unit to the mfb r* unit The symbol units and the r* units
are purely linear.

x1 units

Figure 5: A production sub-network

winner
take-all

competition

X

IIB•! 1@r1.B•s
1
@r

2
n

winner-
take-aU
competition

Figure 6: Detail of the clean-up network

Note that the clean-up circuit is in a position not only to
eliminate noise? but also to choose between multiple
possible of values for x, should WM support more than
one simultaneous binding for both triples in a
production's condition. To achieve this, the winner-take
all circuit needs some way of breaking a tie when two
symbols match x equally well. This can be achieved by
adding a small amount of noise to winner-take-all
competition.

Thus we see, as mentioned above, that noise and ambigu
ity problems that may arise in perfonning a single
unbinding can be ameliorated by combining multiple
unbindings representing multiple simultaneous constraints
on the retrieved item. In fact, the more knowledge we
have about what we want to retrieve, the clearer the result
will be.

2.5. Best-match conflict resolution

As explained in the preceding section, if there is no way
to jointly bind x in the two condition triples, there will be
a weak noisy pattern in the x units. Thus the strength of
the pattern in the x units can serve as a measure of how
well the production's condition matches WM. This part
of the architecture is shown in Figure 5.

Each production sub-network contains a unit whose value
is the squared length of the vector in the x units. This
strength-of-match unit sums the squares of the activities
of all the x units. As with the + operation, this can be
implemented either by making the strength-of-match unit
a sigma.-pi unit or by making it a linear unit and using
multiplicative triangle junctions. The details of the clean
up circuit are shown in Figure 6.

A winner-take-all circuit connecting the strength-of
match units for all productions then chooses the most

6

active unit- the best-matched production, according to
TPPS' s measure of quality of match.

2.6. Firing a production; representation ofproduc-
tions1 actions

The winning strength-of-match unit now gates open
connections from its .r* units to WM. These connections
use the x* vector representing the selected value for x to
build the patterns representing the two triples on the
action side of the production, (s3 r3

x) and (s4 r4
x), and

add the frrst and subtract the second from WM. This
amounts to changing the vector B in WM by adding
~®r3®x*- s4®r4®x*. Thus the connection from the mtb.
.r* unit to the ijk element of WM is

The units in WM are pureiy linear.

2.7 Comparison with the DCPS architecture

Figure 7 shows the top level architecture of DCPS form
(Hinton and Touretzk:y 1988). Both architectures use a
set of units for working memory. DCPS uses binary
working memory units where superimposed representa
tions are inclusively ORed together. TPPS uses linear
working memory units where superimposed representa
tions are added together. TPPS used six different activity
levels for working memory elements (0.0, 0.2, 0.3, 0.6,
0.8, 1.0). DCPS used clause spaces to extract triples from
working memory. TPPS does not explicitly extract triple
representations from working memory. In DCPS, the
units in the rule space all share the same bind space
during the competitive match. In additior4 all the effect
of variable binding on the rules passed through the clause

Figure 7: DCPS architecture

spaces. In TPPS the clean-up units perfonn a function
similar to the DCPS bind space. The bind in TPPS space
is smaller than in DCPS (equal to the number of symbols)
but it is duplicated in every production sub-network. In
addition, each rule connects directly to its binding units.
In DCPS, the rule space is a set of winner-take-all cliques.
In TIPS, the strength-of-match units also engage in
winner-take-all competition. In summary the major
differences at the architectural are: (1) DCPS and TTPS
use different encodings of triples, and (2) because TIPS
does not use clause spaces is it almost completely feed
forward (except at the end) whereas DCPS uses a com
petitive matching strategy throughout the course of rule
matching.

3. Results and discussion

We tested 1PPS on one of the test rule sets from DCPS:

(A A ?) (B B ?) => -{A A ?) +(C c ?)
(B B ?) (C c ?) => -(B B ?) +{D D ?)
(C c ?) (D D ?) => -(C c ?) +{E E ?)
(D D ?) (E E ?) => -(D D ?) +(F F ?)
{E E ?) (F F ?) => -(E E ?) +(A A ?)
(F F ?) (A A ?) => -(F F ?) +(B B ?)

This rule set was allowed to cycle, starting from the state
of having only (A A X) and (B B X) in working memory
and is able to run indefinitely without misfiring.

To test for robustness to cross-talk among the symbols,
we also rnn TPPS with noise; we added one random triple
of symbols after each production f.tring. Note that since
our symbols are represented by 7 -bit Boolean vectors of
length 3, of which rbere are only 35, we are using a fairly
dense sampling of the symbol space, using 25/35 = 71%
of the possible symbol vectors (as compared to lxl0480%
used by DCPS). Thus in adding noise triples of such
densely packed symbol vectors, we are introducing quite
a high level of cross-talk across symbol vectors.

The average number of productions fired before error was
9 and the standard deviation was 3. An error was defined
as either a production fuing out of order or getting an
incorrect binding on the output In most cases, even after
the flrst error, the production system was able to pick up
the sequence again, either using the correct symbol on the
output, X, or a symbol which had a very similar represen
tation. (Note that for a symbolic system, the expected
number of error-free production cycles under the same
conditions is very large; the probability of randomly
generating a triple that will cause the wrong production to

7

fire in collaboration with one of the legitimate triples is
6(253 = 4 x 10"' so the expected number of correct firings
before such a misfrre is about 2500.)

These results suggest that tensor operations can compete
with custom coarse codings in their ability to represent a
modest nwnber of active elements in working memory
chosen out of large nwnber of possible elements. This
capability is realized by allowing multiple concmrent
unbindings or queries to produce an unambiguous result
where a single unbinding might have been impossible to
interpret

Another advantage of this representation is that it allows a
much denser sampling of the symbol space than other
representations. This is extremely beneficial when we
also want to use the bit vector representations of symbols
as feature vectors in another part of a model. Less sparse
representations of structures can also be used. In DCPS,
the fraction ofWM cells involved in representing each
triple is 28/2000 = 1%, while in TPPS it is (3(7)3 = 8%
(the ratio of 1:8 is the cube of the ratio of the fraction of
active elements in the vectors representing symbols: 6/25
= 24% for DCPS, 3n = 43% for TPPS).

The main difference in design of the representation
between DCPS and TPPS is that in DCPS the representa
tion was designed at the level of whole strUCtures -
triples - while in TPPS it was designed at the level of the
atomic constituents- symbols- and combined with a
simple, general-purpose scheme for building representa
tions of structures from the representation of the constitu
ents. In the tensorial approach, the computational
adequacy of the patterns for the structures is a conse
quence of the adequacy of patterns for the symbols, which
is easy to ensure: it suffices rbat they not be too dose in
their small vector space. "Mind the symbols and the
structures will take care of themselves." In DCPS, on rbe
other hand, rbe acceptability of the representation of rbe
triples has to be built using considerable computational
effort The representation of the triples did not derive in
any general and well-motivated way from the representa
tions of rbeir constituentS (indeed, it is only through some
kind of rational reconstruction like that presented in rbe
beginning of this paper that we can view the distributed
patterns for the triples as deriving in any way from a
distributed representation of the constituents).

In addition to its representational advantages, the tensorial
approach can also lead to simpler network dynamics. In
the TPPS, the network is strictly feed-forward using linear
units, with the exception of two places: (1) the winner-

take-all competition among the rules in Figure 4 and (2)
the winner-take-all competition among the symbols in
each rule in Figure 5. This keeps the feedback within a
module (selecting a variable) independent of the feedback
between modules (selecting a rule). The two way
feedback connections between the rule and clause spaces
in DCPS cause it to have more complex dynamics. On
the other hand, the settling process of DCPS achieves
variable binding and conflict resolution in parallel~ while
TPPS perlonns conflict resolution only after all produc
tions have attempted - in parallel - variable binding.
In practice, however, TPPS settles in less than 10 steps.

The last point we want to make about tensor representa
tions is that they are easy to manipulate. This makes both
the design and the analysis of resulting system much
easier than with custom coarse codings. For this reason,
tensor products are likely to be a good flrst choice for any
compositional representation problem. In this case, a
straight fornard application of the tensor product did
quite well, but even in other cases where the tensors
products model might not work as well as one would like,
it is likely to be a good first cut from which custom design
c:m then progress.

Acknowledgements

The core of this work was carried out at the connectionist
summer school and we thank the supporters (AFOSR,
AAAl, SIGART, and the Sloan Foundation) and organiz
ers of the summer school. We thank the members of the
summer school's "tensor product working group'\
especially Dave Touretzky, for very helpful conversations
and many helpful comments on an early draft of this
paper.

This work has been partially supported by NSF grants
IRl-8609599 and ECE-8617947 to the second author, and
by a grant to the second author from the Sloan
Foundation's computational neuroscience program.

References

Dolan, C. P. and Dyer, M.G. (1987). Symbolic Schemata,
Role Binding, and the Evolution of Structure in Connec
tionist Memories. Proceeding of the First I nternationai
Conference on Neural Networks, San Diego, CA, Volume
II, 287-298.

Dolan, C. P. and Dyer, M. G. (1988). Parallel Retrieval
of Conceptual Knowledge, Proceedings of the 1988
Connectionist Summer School.

8

Hinton, G.E. (1981). A parallel Computation that Assigns
Canonical Object-based Frames of Reference. Proceed
ings of the 7th International Joint Conference on Artifi
cial Intelligence.

Rumelhart. D. E . ., Hinton., G. E., & McClelland, J. L.
(1986). A Framework for PDP. In D. E. Rume~ J. L.
McClelland, & the PDP Group, Parallel Distributed
Processing: Exploration in the Microstructure of
Cognition. Volume 1: Foundations.

Smolensky, P. (1987). One Variable Binding and the
Representation of Symbolic Sttuctures in Connectionist
Systems. Technical Report CU-CS-355-87, Department
of Computer Science, University of Colorado Boulder.

Touretzky, D. S. and Hinton, G. E. (1988). A Distn'buted
Connectionist Production System. Cognitive Science,
12(3), 423-466. ,,

